WHAT IS THE SOURCE OF OUR DRINKING WATER?

water supply source for drinking water. Lake Tuscaloosa is a 5,885-acre impoundment of North River and several Currently, Harris Lake is used for industrial water. major creeks. This beautiful man-made lake holds more Nicol and Harris Lake are our alternate sources of water than 40 billion gallons of excellent quality water. Lake Tuscaloosa is Tuscaloosa's primary surface

Water & Sewer Department's Office at 2201 University copy of the data may be viewed at the City of Tuscaloosa Source Water Assessment and has published the data. A The City of Tuscaloosa has completed the required

watershed has an impact on the quality of our drinking portion of three counties. Every activity in the Lake Tuscaloosa's watershed is comprised of a large

WHAT CAN I DO TO PROTECT OUR SOURCE OF DRINKING WATER?

on May the 7th. These events are a great way to learn about May the 6th followed by the third annual Lake Cleanup Day at www.tuscaloosa.com for more information. our lakes and to participate in their protection. Contact the Lakes Division at (205) 349-0279 or visit the City's website The Lakes Division is planning a Watershed Festival or

Jerry Plott Water Treatment Plant

the demands for quality water in sufficient quantity. which has been an award winning plant for the past thirteer quality of operations and the dedication of the plant staff water plant of its size and type. The award recognizes the the Alabama Water & Pollution Control Association for a years! Improvements are ongoing to the facilities to meet The Plott Plant joins the Ed Love Water Treatment Plant Treatment Plant won the Best Operated Plant Award from In its first year of eligibility, the Jerry Plott Wate

also has room to expand if other operational changes are necessary in the future. job of disinfecting the water as chlorine. The new building chlorine. This chemical is much safer and does the same sodium hypochlorite, a chemical that takes the place of In 2010, the Ed Love Plant added a building to house

WHAT TREATMENT TECHNIQUES ARE USED TO TREAT MY WATER?

and the Jerry Plott Water Treatment Plant. The Ed treatment plants. These are the Ed Love Water Plant plants treat water from a common intake structure at named after former city councilman Jerry Plott. Both superintendent Ed E. Love. The Jerry Plott Plant was Love Water Plant was named for former The City of Tuscaloosa operates two water

flocculators and four settling basins. control. The water then travels through four removal of iron and manganese for taste and odor Sodium permanganate is added when necessary for aluminum sulfate and lime are added for coagulation. plant. Raw water enters a flash mixer where The Ed Love facility is a conventional treatment

corrosion control. The finished water is pumped into media filters. Lime is added for pH adjustment and the Distribution System. corrosion control. Sodium hypochlorite is added for tooth decay, and ortho-polyphosphate is added for disinfection. Fluoride is added for the prevention of The water is then gravity filtered through multi-

Settling is accelerated with a series of settling plates. enters a settling basin. The plant has two basins the water passes through one of two flocculators, it starts in a flash mixer with poly aluminum chloride. As different chemicals and techniques. Coagulation treatment as the Ed Love Plant, but with some The Jerry Plott Water Plant uses the same basic

plants is very similar. distribution system. The water produced at these two for pH control. Fluoride and orthopolyphosphate are impurities are left behind. Sodium hydroxide is added squeezed through the pores of the membranes while bank of seven membrane filters. The water is also added. The finished water then goes to the The settled water is pumped under pressure to a

consumers. The plants are operated 24 hours a day highest quality water possible for more than 200,000 employees. These employees are responsible for the The plants are maintained by 35 full-time

businesses have selected Tuscaloosa as their home excellent quality, numerous industries and supply of excellent quality water! Because of this The City's most valuable asset is its abundant

Public	Jerry F	Ed Lov	Water	Water	Water	Water
Fire	Nott Trea	e Treatn	Storage	Booster	Storage	Mains i
tydrants	atment (nent Cap	Capa	· Pump	e Tanks	n Servi
	Sapacity	pacity4	ity	Station	3	e, 4" a
	.14 Milli	5.7 Milli	25.4	S	***************************************	nd large
3218 H	on Gallo	on Gallo	Million	8	13	r5
Public Fire Hydrants3218 Hydrants	Jerry Plott Treatment Capacity14 Million Gallons/ Day	Ed Love Treatment Capacity45.7 Million Gallons / Day	Water Storage Capacity25.4 Million Gallons	Water Booster Pump Stations Stations	Water Storage Tanks13 Tanks	Water Mains in Service, 4" and larger559 Miles

WATER AND SEWER DEPARTMENT

Tuscaloosa, AL 35403-2090 Jimmy W. Junkin, Director Post Office Box 2090

www.tuscaloosa.com,or you may call (205) 248-5010. The agenda for each meeting is published in the second floor of Tuscaloosa City Hall, 2201 University Blvd Tuscaloosa News on Saturday and on the internet at Tuesday at 6:00 pm in the City Council Chambers on the The City of Tuscaloosa's Mayor and Council are as The Tuscaloosa City Council Meetings are held every

Harrison Taylor, District 2 **Bobby Howard, District 1** Mayor, Walt Maddox

William Tinker, III, District 7 Cynthia Almond, District 3 **Bob Lundell, District 6** Lee Garrison, District 4 Kip Tyner, District 5

Drive Though Hours Water Billing Office 8:00 am - 4:30 pm 7:30 am - 5:00 pm Turn On/Turn Off Monday - Friday (205) 248-5000 Office Hours:

7:00 am - 3:30 pm Wastewater Plant Monday – Friday (205) 248-5900 Office Hours:

Hilliard N. Fletcher

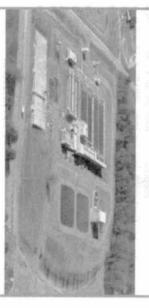
Distribution Division 7:00 am – 3:30 pm Line Breaks/Leaks Monday – Friday (205) 248-5950 Office Hours: 7:00 am -- 3:30 pm Source Division Monday - Friday Lakes Division (205) 349-0279 Office Hours:

Ed Love Water Filtration Plant

7:00 am -- 3:30 pm Monday - Friday (205) 248-5630 Office Hours:

2101 New Watermelon Road Additional Information: Jerry Plott Water Plant Tuscaloosa, AL 35406 Perry A. Acklin (205) 248-5600

Water Treatment Manager


Phone: (205) 248-5630

Phone: (205) 349-0279 Lakes Division Manager Scott Sanderford

CITY OF TUSCALOOSA WATER AND SEWER DEPARTMENT

QUALITY REPORT ANNUAL WATER

1125 Jack Warner Parkway North East Tuscaloosa, Alabama 35404-1056 Ed Love Water Filtration Plant Telephone (205) 248-5630 Fax (205) 349-0213 City of Tuscaloosa

http://www.tuscaloosa.com

7:00 a.m. to 3:30 p.m Office Hours:

THE SAFE DRINKING WATER ACT... What Does It Mean For You?

on December 16, 1974. The purpose of the law is to assure that minimum national standards for the protection of public health. the nation's water supply systems serving the public meet The Safe Drinking Water Act (SDWA) was signed into law

calling the EPA Safe Drinking Water Hotline 800-426-4791 or EPA's website address www.epa.gov/safewater. contaminants and potential health effects can be obtained by the water poses a health risk. expected to contain at least small amounts of some contaminants. Agency (EPA) to establish national drinking water standards. All drinking water, including bottled water, may reasonably be The presence of contaminants does not necessarily indicate that The SDWA directed the U.S. Environmental Protection More information about

sources of contamination, and plain language definitions. provides consumers the detected amounts of contaminants, centerpiece of public right-to-know in SDWA. Confidence Report or Annual Water Quality Report is the consumer involvement and right-to-know. The Consumer Amended in 1996, the SDWA contains provisions for This report

appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available recipients, HIV/AIDS positive or other immune system cancer patients undergoing chemotherapy, organ transplant from the Safe Drinking Water Hotline 800-426-4791. water from their health care providers. EPA/CDC guidelines on from infections. People at risk should seek advice about drinking disorders, some elderly, and infants can be particularly at risk population. People who are immuno-compromised such as vulnerable to contaminants in drinking water than the general The amendments recognized that some people may be more

the ground, it dissolves naturally occurring minerals and the presence of animals or from human activity. radioactive material, and can pick up substances resulting from and wells. As water travels over the surface of the land or through water) include rivers, lakes, streams, ponds, reservoirs, springs. The sources of drinking water (both tap water and bottled

PLAIN LANGUAGE DEFINITIONS

- known or expected risk to health. MCLGs allow for a margin of level of a contaminant in drinking water below which there is no . Maximum Contaminant Level Goal or MCLG: The
- close to the MCLGs as feasible using the best available treatment a contaminant that is allowed in drinking water. MCLs are set as Maximum Contaminant Level or MCL: The highest level of
- to control microbial contaminants. MRDLGs do not reflect the benefits of the use of disinfectants below which there is no known or expected risk to health. . Maximum Residual Disinfectant Level Goal or The level of a drinking water disinfectant

PLAIN LANGUAGE DEFINITIONS continued

highest level of a disinfectant allowed in drinking water. There is 4. Maximum Residual Disinfectant Level or MRDL: The

> for control of microbial contaminants. convincing evidence that addition of a disinfectant is necessary

- to reduce the level of a contaminant in drinking water. Treatment Technique or TT: A required process intended
- which a water system must follow. which, if exceeded, triggers treatment or other requirements Action Level or AL: The concentration of a contaminant

In the following tables you may find terms and abbreviations understand these terms we have provided the following that might not be familiar to you. To help you better

milligrams per liter ppm means parts per million and is equal to mg/L or

micrograms per liter ppb means parts per billion and is equal to µg/L or

nanograms per liter ppt means parts per trillion and is equal to ng/L or

pCi/L equals picocuries per liter, a measure of radiation

CFU equals Colony Forming Units NTU equals Nephelometric Turbidity Units MFL means million fibers per liter longer than 10

N/A - not applicable - ND - not detected micrometers

of the EPA, a statewide waiver for the monitoring of asbestos contaminants was not required. and dioxin was issued. Thus, monitoring for these Based on a study conducted by ADEM with the approval

EPA Lead and Copper Statement

http://www.epa.gov/safewater/lead. exposure is available from the Safe Drinking Water Hotline or at drinking or cooking. If you are concerned with lead in your water, several hours, you can minimize the potential for lead exposure by plumbing components. When your water has been sitting for associated with service lines and home plumbing. The City of problems, especially for pregnant women and young children drinking water, testing methods, and steps you can take to minimize you may wish to have your water tested. Information on lead in water, but cannot control the variety of materials used in the flushing your tap for 30 seconds to 2 minutes before using water for Tuscaloosa is responsible for providing high quality drinking Lead in drinking water is primarily from materials and components If present, elevated levels of lead can cause serious health

Tuscaloosa's Lead and Copper Program

continues to be very successful. The City has always commend those 57 participants for their support of this maintained compliance with this regulation. We would like to involvement of these citizens, the lead and copper program annually for the presence of lead and copper. Because of the Since 1991, the City of Tuscaloosa has tested 57 homes

PRIMARY DRINKING WATER PARAMETERS WATER SOURCE LAKE TUSCALOOSA WATER QUALITY REPORT

chiorination	8	1 28	1.28	WA	×	100/1	methane
sy-ricoded of drinking water chorination	S	881	8.8	K.	Z S	FG/1	Chloroform Dibromochloro-
by-Froduct of drinking water chloringsion	8	4.26	4.26	Š	S.	1997	methane
Major Sources in Drinking Water	1 de 1	Range of detections	Highest Level In Distribution System	MCL6	₹ E	Units	510 d
<u>v.</u>	ion leve	it were above the action level.	result were above the action level	ORG ORG UNREGUL	one one	T result	
No preservatives action level. Only one lead result and only	No No		0.105 imples were	1.3 0% of sa	13 than 9	mg/L	Copper as Cu mg/L 13 1.3 0.105 0.105 Inches were no violations, more than 90% of samples were below the
Corroson of household plumbag system. Stour-		<0.050 ⋅			2		
Corrotion of tousehold plumbing system. Excasion of natural deposits	5	' 1	2005	0	0.015		Lead as Pb
Major Sources is Drinking Water	7	Range of delections	Highest Level in Distribution System	ECT C	<u>\$</u>	Units Units	Period Covered: 12 Months Ending December, 2010
NG Regulations	Water	MARY MO	OPPER PR	AND COR	LEAD LEAD	S resul	A STATE OF
Chlorotorm, bromodichloromethane, Utaromochloromethane & Bromotorm annual average MCL to or less than 80	name &	ochloromet han 80	to or less than 80	COMMON	SOCIETY	m, pron	the sum of Cherotor
by-product of drinking water chlorination	₹	13.9 - 85.5	35.9	¥.	8	F	Total Trihalomethanes
annual average MCL equal to or less than 60 pg/L.	se than 60 µg/L	to or less th	MCL equal to or la	Sperake	annual	a division	
cy product or directing water	S o	98-510	251	NN 09	8		Haloapetic Acids
Major Sources in Drinking Water	Ter Re	Ruspe of decactions	Artraga Lovol in Distribution System	#CLG	E.	Units	Months Ending December, 2010
Regulation of Public Control	W.	a Drinking	ass Foder	t or sur		II rest	Parked Conserved: 42
Erosion of natural deposits.	ह	15.3-31.0	31.0	ន	8	mg/L	Sulfate as SO,
Runoff from ferbitzer use: Leaching from septic tanks, sewage: Erosion of natural deposits	₹	0.32-0.38	0.038	6	ಕ	mg/L	Nitrate as NO3 -N
addifine which promotes strong leeth: Discharge from fertilizers and aluminum fectures	₹	0.70-1.28	128	4		mg/L	Fworde as F
Regulators of the second	Water	a Drinking	MUANICE Lang Feder	No. No.		il reso	September 1
Erosion of natural deposits	8	0.6+/-0.5	0.6 +/- 0.5	a	16	DCM.	Gross Alpha
Regulations	Water	al Drinking	pass Feder	for sur	ta me	uter IIV	Sec. 2005.11
Whiter additive used to control recrobes	ह	0.2-3.0	ω	4	4	mg/L	Chlorine as Ct ₂
Soil Runoff -Turbiality can interfere with disinfection	₹	0.005	0.498	N.	03	Z.	Turbidity
Naturally present in the environment	ह	1.1-1.9	1.9	N.	⇉	mg/L	Total Organic Carbon
in 2009. No samples were Ecoli positive.	n 2009	or 0.16%	tal Coliform	We for To	e positi	es ≨	Only 4 of 2506 samples were positive for Total Coliform
Naturally present in the environment	₹	Not detected	Colforn Present a (18 % of samples in one mortin	c	resence of total sistem because in <5% of the 120 recurred critiny samples	Presence of total coliform because in <5% of the 120 required micronly samples	Total Coliform Bacteria
Major Sources in Driving Water	Yes don	Runge of	Highust Lorel in Distribution System	M CLG	ğ	Units	Period Covered: 12 Months Ending December, 2018
	ANTS	OBCAL NIMALA	TED CO	DETEC.	. 0	E	

WATER QUALITY REPORT

TABLE OF PRIMARY DRINKING WATER PARAMETERS MONITORING PERIOD ENDING DECEMBER 2005 WATER SOURCE LAKE TUSCALOOSA

THE REAL PROPERTY.	WISSTON	100 miles	ordione	BCM	
Analyte	₩CL	Levrel Detected	Analyte	Ę	Level Detected
Total Coliform Bacteria	₹	1:00%	Beta / Photon Emitters	4 mrem / yr	<u> </u>
Turbidity	40.3 NTU	0.300	Alpha Emitters	15 pC/L	-
MYSHON	COMMISSION		Combined Radium	5 pCi/L	NIA
Antimony as Sb	6 ppb	8	Uranium	30 ppb	× ×
Arsenic as As	10 ppb	3	DRSAND C	STERMEN	200
Asbestos*	7 MJF	NA	Endrin	2 ppb	8
Barium as Ba	2 ppm	8	Epichlorohydrin	П	8
Beryllium as Be	4 ppb	8	Glyphosate	700 ppb	N)
Cadmium as Cd	5 ppb	8	Heptachlor	400 ppb	ND.
Chromium as Cr	100 ppb	8	Heptachlor epoxide	200 ppt	
Copper as Cu	AL=1.3ppm	ND	Hexachlorobenzene	1 ppb	ON
Cyanide as Cn	200 ppb	8	Hexachlorocyclopeniaciene	50 ppb	N.
Fluoride as F	4 ppm	8	Lindane	200 ppt	S
Lead as Pb	AL=15 ppb	8	Methoxychlor	40 ppb	S
Mercury as Hg	2 ppb	3	Oxamyi (Vydate)	200 ppb	ΠD
Narate as NO3 A	10 ppm	8	PCB's	S00 ppt	8
Nitrite as NO2-N	1 ppm	3	Pentachlorophenol	1 ppb	8
Selenium as Se	50 ppb	8	Pickoram	500 ppb	8
inallum as ii	1	3	Simazine	4 ppo	3
Three .	Table of the last	3 2 2	Donne	S and	5 8
Chloramines	4 pom	8	Carbon tetractionide	5 000	3 8
Chiorite	1 ppm	3	Chlorobenzene	100 ppb	8
Dioxide	800	3	Dhranodiospropire	200 ppt	8
Bromate	10 ppb	8	o-Dichlorobergene	600 ppb	8
Total Organic Carbon	=	2.8	p-Dichlorobenzene	75 ppb	ND
Total Transmartares	80 ppb	29	2-Dichoroethane	5 ppb	N.
Haloacetic Acids	60 ppb	71.5	1 1-Dichioroethylene	7 ppb	S
CRIGANIC	CHEMICALS		cis-1,2-Dichloroethylene	70 ppb	8
2,4-D	70 ppb	8	trans-1,2-Dichloroethylene	100 ppb	8
2.4.5-TP(Silvex)	50 ppb	8	Dichloromethane	5 ppb	8
Acrylamide	Ħ	8	1.2-Dichloropropane	5 ppb	종
Alachior	2 ppb	8	Ethylbenzene	700 ppb	8
Atrazine	3 ppb	8	Ethylene dibromide	50 ppt	ND.
Benzo(A)pyrene	200 ppb	8	Styrene	100 ppb	N
Carbofuran	40 ppb	8	Tetrachloroethylene	5 ppb	S
Chlordane	2 ppb	8	1,2,4-Trichlorobenzene	70 ppb	8
Dalapon	200 ppb	8	1,1,1-Trichloroethane	200 ppb	ND
Di(2-ethylhexyl)adipate	400 ppb	S	1,1.2-Trichtoroethane	5 ppb	3
DH2-ethylhexyliphthalates	6 ppb	8	Trichloroethylene	5 ppb	8
Dinoseb	7 ppb	8	Toluene	1 ppm	8
Diquat	20 ppb	ਣ	Vinyl Chloride	2 ppb	8
Dioxin[2,3,7,8-TCDD] *	30 ppq	3	Xylenes	10 ppm	8
1	100 noh	5			